
Hands-On Mathematics for Deep Learning: Build a solid mathematical foundation for training efficient deep neural networks
A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architecturesKey Features Understand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networks Learn the mathematical concepts needed to understand how deep learning models function Use deep learning for solving problems related to vision, image, text, and sequence applications Book Description Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help yo